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For small deviations from the initial conditions corresponding to a center, both in the 
case 1, < la (Fig. 1 b) as well as in the case I, = 1% (Fig. 1 d). the representative point 
describes small circles around the center, i. e, , the quantities pi (i = i, 2, 3) perform 
small periodic oscillations around pi*. In the case I, = 1, a periodic motion corresponds 

also to the singular point (p3 = I,, p3’ = 0) for which only the one “fast” quasi-oscillator 

p3 = 11, 03 Of = -P3t + 930 

“moves”. However, the nature of this periodic motion is such that for the least change 
in the initial conditions the representative point (Fig. 1 d) starts to move along a cycle 

close to the separatrix, which corresponds to a “slow” pumping of energy between the 

oscillators* 

The author thanks V.V. Rumiantsev and L.G. Khazin for attention to the work and 
for useful discussions. The author takes this opportunity to thank V. I. Arnol’d for draw- 

ing the author’s attention to Ref. [Sj. 

BIBLIOGRAPHY 

1. Khazin, L, G. and Tsel’man, F, Kh., On the nonlinear interactionof 

resonant oscillators. Dokl. Akad. Nauk SSSR Vol. 193, Np2, 1970, 

2. Tsel’man, F. Kh,, On pum~ng transfer of energy between non~nearly-~upled 
oscillators in third-order resonance. PMM Vol. 34, Np5, 1970. 

3. Moser, J., Lectures on Hamiltonian Systems. Memoirs Amer, Math. Sot. 

N%l, 1968, 
4, Briuno, A. I),, Normal form of differential equations. Dokl, Akad. Nauk SSSR 

Vol.157, NQ6, 1964. 
5. Vitt, A. and Gorelik. G., Oscillations of an elastic pendulum as an example 

of the oscillations of two ~rame~ical~-~upled linear systems. Zh, Tekhu. 

Fiz. Vol. 3, I% 2, 3, 1933. 

6. Mettler, E., Kleine Schwinguugen und Methode der siikularen St&ungen. Z. 

Angew. Math. Mech. VoI.43, Special Issue, pp. T81-T85, 1963. 

Translated by N. H. C w 

ON THR ELATION BRTWXEN RADIAL AND VSRTfCAL FICTIONS 

OF PARTICLW IN CYCLOTRONS 

PMM Vol. 35, Np6, 1971, pp.1096-1100 
V. M. ST~ZHI~K~ 

(Moscow) 
(Received December 29, 1969) 

We consider the betatron oscillations of particles in cyclotrons with weak focus- 
ing. The equations of motion of the particles are described in the form of a 
fourth-order Liapunov system [1, 27. On the basis of a transformation of Liapu- 
nov systems, proposed by the author [3, 43, the equations of motion are reduced 
to a second-order nonauto~mo~ equation containing a smalI parameter. The 
vertical-radial oscillations of the particles are determined with the aid of the 
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small parameter method and the transition process from radial oscillations to 
vertical-radial ones is described. 

The equations of betatron oscillations of particles in cyclotrons with weak focusing 
[8] may be written in the form (*) 

E” + 4 = - v/a pqa, rl” + arl = - fwl (1) 

( 5 
r - ro 

=-( q=z_; n 
ro r0 

a==-_ P k = 03 (i - n) ) 
Here r and z are two of the cylindrical coordinates of a particle, the dot on top denotes 
differentiation with respect to a dimensionless time z and 

z=w 1/1--t, o _ eH (4 
mc 

n=- _._!% H' (ro) 
H PO) 

(O<n<l), k =- *H"(ro) 

m and e are the mass and the charge of the particle, c is the velocity of light, H (r) 

is the vertical component of the magnetic field strength vector, 3 is the radius of the 

trajectory corresponding to a given energy of the particle. System (1) possesses an inte- 

gral of particle energy, corresponding to the oscillatory part of the motion, 

E= + E’s + a$ + T)‘” + ps.112 = tl2 (P > 0) (2) 

Before proceeding to the transformation of system (1) we note that it admits of the 
solution (the purely radial oscillations of the particles) 

q SO, E = p cos (T - to) (3) 

from integral (2) it follows that the constant ~2 equals thesquareof the amplitude of the 
purely radial oscillations. To judge the stability of the latter, in [l] we set 

E = p cos (r - zo) + 5, r=Y 

and obtain equations in variations of the form 

5” + 5 = 0, y” + [a + @ 00s (r - To)1 Y = 8 (4) 

Hence it follows that the instability of the purely radial oscillations (3) is determined 

by the instability of the trivial solution of the second of Eqs. (4) - a Mathieu equation. 

On the( pLn>plane the instability regions abut the critical points nr on the n-axis 
with tangent slope X , 

12 III=-, 
4 + 12 X=%- k (1 - nz) (1 = 1,2, . . .) 

Thus, in the first approximation, the instability regions (3) in the ( pin )-plane are de- 
termined by the inequalities 

12 2k 

4+1?,- C!P (4 + 1”) 

for any positive integer Z. Of greatest interest is the first instability region (1 = 1) with 
the critical value n, = Vs. 

*) Here in the first equation in (1) we have corrected a misprint which crept in in [S] 
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To seek periodic solutions of system (l), other than the purely radial oscillations, we 
transform it. Using the Liapunov substitution [l] 

E = p sin 6, E = pcosQ, “‘1= P5 (8 

and integral (2) and following [3, 41, we arrive at the one equation (the prime denotes 
the derivative with respect to 9) 

C sin 6 -- 3/2 s’ ~0s Vj c] + 0 (p”) (6) 

Fo~owi~g Poincard [6] we seek the periodic solution of Eq. (6) in series form 

5 (V; P) = io (6) + Eli;1 (fi) -i- $52 (0) -t 1’. 

and by subs~t~ting this series into Eq, (6) we obtain the equations for derermining co 

and gl i;ns + xg, = 0 (3 

&“+afl = - B&I 
c 

vi + a<? t_ CO’~ sind -+ 

(IS) 
,J 

Equation (7) possesses a family of T @)-periodic solutions 

5s = MO cos I/TV + N0 sin i/ZV (r (3) -2 2,&) (9) 

Solution (9) can be iooked upon also as being qT (a)-periodic, where q is any positive 
integer. Equation (6) depends explicitly on the independent variable 6, this dependency 
also can be treated as being &t-periodic with any positive integer p. Therefore, solu- 

tion (9) is the generating solution for a 2pn-periodic solution of Eq. (6) if and only if 

qT(a)=Qm, i.e., a=: Y’ 
7 

or n f-- 9: 2+ (i6) 

where Q and p are any relatively prime numbers, Thus, Eq. (6) admits of periodic 
solutions with smallest period 2pn (p = 1, 2, . ..) only for the CL defined by formula (10) 

The set of values fn} defined by formula (10) is everywhere dense on the interval @Al) 

of variation of n, in other words, each value of n E (0,1) either is defined by formula 

(lo) or can be a representation of it to any degree of accuracy, 
With due regard to (9) and (IO), Eq. (S) is the equation for determining the first corr - 

ection with respect to P of the Zpn- periodic solution of (6) (p I= 1, 2, . ..I. The inhomo- 
geneous part of this equation contains trigonometric functions with circular frequencies 

a) iP --PI/P, b)IP--%li!‘~ c) (F + 9) I P, (P -i- 3$7)/P 

Let us ascertain when one of these frequencies coincides with the circular frequency of 
the generating solution: 

In case(c)s a coincidence is impossible. In cases(a) and fb)Eq. (8) admits of 2pn- 
periodic solutions for the indicated p not for all values of ~$1~ and No, but only for 
those for which the terms with sin ((r6 I pf and cos (@ I p) in i& right-hand side are 
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annulled. The equations for the generating amplitudes for n = V6 

N, (4 - 2M,,” + N,2) = 0, M, (4 + M,2 - 2iV,2) = 0 

yield the nonzero solutions: M,, = f2, N, = +2. From (9) we then obtain 

&I = rl: 2 T/2-cos (l/s 6 i l/4 n) (ii) 

i. e. , the only value of the generating amplitude equals 2 1/T for the four values of the 
generating initial phase. 

In case n = l/17 the equations for the generating amplitudes turn into identities. There- 
fore, for all the remaining values in (lo), except n = l/j,formula (9) supplies the family 
of generating solutions of Eq. (6) from two parameters. 

In conclusion we dwell on n = l/s , the smallest value of n for which the purely ra- 
dial oscillations (3) are unstable with an arbitrarily small amplitude u. Following [3,4] 

from formulas (5), (11) we have 

P = ‘1s v3P + 0 W, 6’ = 1 + aJ3 v$$k (1 + sin 6) sin 8 + 0 (P*) 

Hence for the period of the vertical-radial oscillations (the desired periodic solution) 
we obtain 

T = g 4n [ 1 + 2/s v/3Bu (1 f sin 6) sin 8 + 0 (pl)]-l d6 = 
s 
0 

(12) 

for the law of motion 

The magnitude of P is determined by the initial value of the derived energy (2) of the 
oscillations. 

let us go on to describe the pumping of energy when n = I/: (z = I/,), i.e., the tran- 

sition process from unstable purely radial oscillations (3) to the vertical-radial oscilla- 
tions (13). The Van der Pol substitution n, 51 

5 = a cos (l/*,0. + cp), j’ = ---‘is a sin (l/,6 + v) (14) 

and a subsequent averaging over the explicitly-occurring independent variable 6 lead 
Eq. (6). for a = ‘14 to truncated Can der Pol equations in the slowly-varying variables 
a and cp 

a’ = l/4 PLpa Jf4 + a* co.7 2q + 0 (p”), ‘p’ = - I/g P3 * - aa -- 
1/4+a” 

sin 2q + 0 (P?) 05) 

An exact integration of this system leads to quadratures which are difficult to handle. 
We restrict ourselves to an approximate integration of it. From the second of Eqs. (15) 

it follows that when 1 a 1 g 2 v/2 we have cp’ < 0 and thus1 cpO 1 > 1 rp 1 > O.By virtue 
of (14) since we have ! u 1 Q 2 fz when 1 6 1 < 2 1/r, where, we recall, 2 r/ 2 is the 
amplitude of the generating solution (11) during the whole of the transition interval being 
considered we can set ros 21p :z 1 if ptO is sufficiently small. Then the first of Eqs. (15) 
gives us for 0, == fl (III ‘- 11 



1048 V.M.Starzhlnskil 

Hence we obtain an approximate law of variation of the Van der Pol amplitude a 

a = 44 e=p ?/a I-WV 
1 - b2exp (PpS) i 

bo = - ’ [ 1/4-fao2- 2]j 
a0 

(16) 

The first of formulas (14) now describes the transition process. Let us ascertain the 
time of transition from the purely radial oscillations (3) to the vertical-radial ones (13). 

By setting u = 2 1/z in (16) for the corresponding value of 2) = 6 we have 

(17) 

We note that the transition process takes place over a time interval whose duration is of 

the order 0 (1 / P), which corresponds to the algorithm of asymptotic integration in the 

averaging method [9]. Because ‘p. is small we have a, z 5 (0) and for small a0 formula 

(17) takes the form 
6 = _2_ ln 2 I=( 0- 1) 

PP 6 (6) 
(18) 

Let us express 5 (0) in terms of the initial values of the original variables, 

5-a> p = f/Es + E’S, 6 (0) = q (0) e (0)2 + 5/a a-3 2 oa [ ()I- !‘* 
Analogously to (12) we determine the original time for the transition process from the 
purely radial oscillations (3) to the vertical-radial ones (13) for rz = l/s, 

where the choice of sign is determined by the choice within the brackets in (13), while 
the magnitude of u is determined by the initial value of the total energy (2) of the 

oscillations. 
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The problem of detonation of one quarter of a space filled with explosive and 
initiated on one of the faces is examined. The finding of the solution in the per- 
turbed region is reduced to the solution of Goursat’s problem for a quasi-linear 

differential equation of second order with two independent variables. This prob- 

lem is solved by the numerical method of characteristics. An examination of 

singular points is presented. The solution in the perturbed region and the form 
of the free surface are obtained. 

The problem of gas motion behind an expanding detonation wave in a space 

with a conical cutout was examined in papers [l. 21. 

1. Let us examine the infinite region 

Zl> 0, 2, < 0 for t < 6 (i-1) 

filled with immovable explosive of constant density PO- The pressure p in the entire 
space is equal to zero. 

It will be assumed that the products of explosion are described by the following equa- 
tion of state 

P - 7P’S 

At the instant of time t = 0 the explosive is initiated on the surface z1 = 0. A plane 

normal detonation wave, which is orthogonal to the free surface z1 = 0 propagates with 
the constant velocity D = y + 1 from the plane of initiation z1 = 0 

2. For t > 0 the motion is self-similar with the following independent variables 

Ei = x,/t, E2 = x,lt (2.1) 

The straight line & = D corresponds to the front of the detonation wave. Behind the 
wave front the gasdynamic parameters assume the following values 

u1= 1, u2 = 0 ( p=l, c=y P.2) 

where u1 and us are components of the velocity vector, c is the speed of sound. Far 
from the straight line & = 0 in the region 

-Dl(y - 1) < Ei < D 


